返回
專題      專題
返回

目錄

動脈粥樣硬化模型

C57BL6小鼠

C57小鼠
動脈粥樣硬化模型



C57BL/6小鼠
動脈粥樣硬化模型造模和造模方法
Model Diet of Atherosclerosis for C57BL6 Mice

C57BL/6小鼠是所有正常小鼠中對動脈粥樣硬化相對敏感的品系,從而被廣泛用于高脂血癥和動脈粥樣硬化研究和模型造模。在我國,一般所說的C57也都是指的這個品系,不過,建議你在購買C57時應當確認是否C57BL6。


一、C57小鼠對動脈粥樣硬化模型造模的優勢和特點


C57小鼠的優勢

(1)國內有多個單位提供,購買容易。

(2)喂養的模型飼料成本低。每只小鼠每天飼料消耗量只有幾克。

(3)應用C57小鼠復制動脈粥樣硬化模型或者從事動脈粥樣硬化的研究,其優勢是這個品系的小鼠具有代謝綜合癥的基因傾向,不僅相對容易地形成動脈粥樣硬化,而且研究結果容易與其他相關研究文獻的研究結果結合起來分析和討論。

C57小鼠的缺點

(1)C57小鼠與其他小鼠相似:血漿膽固醇在不同脂蛋白中的分布不同于人;

(2)C57小鼠的高脂血癥屬于高膽固醇血癥,一般不能形成高甘油三酯血癥。

(3)所形成的動脈粥樣硬化只能發展到脂質條紋期,不能形成斑塊。

(4)動脈粥樣硬化發生部位在主動脈起始部位,與人類不同。損傷部位小,僅有800-1000平方微米左右。

如果這些方面不能滿足你的研究需要,應當考慮選擇其他動物。

二、C57小鼠動脈粥樣硬化模型復制的飼料


由于Paigen等研究者已經對多種品系大鼠進行了動脈粥樣硬化模型飼料進行了針對性的研究,所設計的模型飼料已經成為經典和通行的動脈粥樣硬化模型飼料,因此,C57是過去和當前最常用的動脈粥樣硬化模型飼料。

由于原料不同,Paigen飼料包括日糧型和純化型兩類模型飼料。

此外,目前的研究認為,同型半胱氨酸血癥(HHCY)在動脈粥樣硬化形成過程中發揮作用。因此,C57小鼠可以用Paigen飼料基礎上添加蛋氨酸的模型飼料,這種飼料屬于純化型飼料(為了準確控制蛋氨酸含量)。

總之,C57小鼠動脈粥樣硬化研究或者用于模型造模的飼料,包括兩種模型飼料:

(1)Paigen日糧型高脂高膽固醇模型飼料

(2)Paigen純化型高脂高膽固醇模型飼料

點擊上述超鏈接,詳細了解模型飼料和選擇方法。在上述模型飼料,應當優先選擇純化型。

三、C57小鼠的選擇和動脈粥樣硬化造模其他注意事項


(1)在研究設計中,應當特別注意C57的性別、年齡,這在動脈粥樣硬化造模中非常關鍵。

(2)由于不同窩的老鼠之間會不和諧,往往因此造成彼此受傷,這可能會引起體內的炎癥反應,從而影響研究結果,因此,應當在斷奶時不同窩混合喂養,否則,應該單籠喂養。具有舉足輕重的斑塊部位:在主動脈根部和近段形成小的脂質條紋(不能發展到斑塊階段)。

有不清楚之處以及其他方面的注意事項,請與南通特洛菲飼料科技有限公司技術部聯系。

References:

Warboys CM, de Luca A, Amini N, Luong L, Duckles H, Hsiao S, et al. Disturbed Flow Promotes Endothelial Senescence via a p53-Dependent Pathway. Arteriosclerosis, thrombosis, and vascular biology. 2014.

Wanschel AC, Caceres VM, Moretti AI, Bruni-Cardoso A, de Carvalho HF, de Souza HP, et al. Cardioprotective mechanism of S-nitroso-N-acetylcysteine via S-nitrosated betadrenoceptor-2 in the LDLr-/- mice. Nitric oxide : biology and chemistry / official journal of the Nitric Oxide Society. 2014;36:58-66.

Steiner T, Francescut L, Byrne S, Hughes T, Jayanthi A, Guschina I, et al. Protective role for properdin in progression of experimental murine atherosclerosis. PloS one. 2014;9(3):e92404.

Simsekyilmaz S, Cabrera-Fuentes HA, Meiler S, Kostin S, Baumer Y, Liehn EA, et al. Role of extracellular RNA in atherosclerotic plaque formation in mice. Circulation. 2014;129(5):598-606.

Plat J, Theuwissen E, Husche C, Lutjohann D, Gijbels MJ, Jeurissen M, et al. Oxidised plant sterols as well as oxycholesterol increase the proportion of severe atherosclerotic lesions in female LDL receptor+/ - mice. The British journal of nutrition. 2014;111(1):64-70.

Neuhofer A, Wernly B, Leitner L, Sarabi A, Sommer NG, Staffler G, et al. An accelerated mouse model for atherosclerosis and adipose tissue inflammation. Cardiovascular diabetology. 2014;13:23.

Meydani M, Kwan P, Band M, Knight A, Guo W, Goutis J, et al. Long-term vitamin E supplementation reduces atherosclerosis and mortality in Ldlr-/- mice, but not when fed Western style diet. Atherosclerosis. 2014;233(1):196-205.

Hasan ST, Zingg JM, Kwan P, Noble T, Smith D, Meydani M. Curcumin modulation of high fat diet-induced atherosclerosis and steatohepatosis in LDL receptor deficient mice. Atherosclerosis. 2014;232(1):40-51.

Funke A, Schreurs M, Aparicio-Vergara M, Sheedfar F, Gruben N, Kloosterhuis NJ, et al. Cholesterol-induced hepatic inflammation does not contribute to the development of insulin resistance in male LDL receptor knockout mice. Atherosclerosis. 2014;232(2):390-6.

de Haan W, Bhattacharjee A, Ruddle P, Kang MH, Hayden MR. ABCA1 in adipocytes regulates adipose tissue lipid content, glucose tolerance, and insulin sensitivity. Journal of lipid research. 2014;55(3):516-23.

Dai Y, Palade P, Wang X, Mercanti F, Ding Z, Dai D, et al. High fat diet causes renal fibrosis in LDLr-null mice through MAPK-NF-kappaB pathway mediated by Ox-LDL. Journal of cardiovascular pharmacology. 2014;63(2):158-66.

Cochain C, Chaudhari SM, Koch M, Wiendl H, Eckstein HH, Zernecke A. Programmed Cell Death-1 Deficiency Exacerbates T Cell Activation and Atherogenesis despite Expansion of Regulatory T Cells in Atherosclerosis-Prone Mice. PloS one. 2014;9(4):e93280.

Busch M, Westhofen TC, Koch M, Lutz MB, Zernecke A. Dendritic cell subset distributions in the aorta in healthy and atherosclerotic mice. PloS one. 2014;9(2):e88452.

Al Rajabi A, Castro GS, da Silva RP, Nelson RC, Thiesen A, Vannucchi H, et al. Choline supplementation protects against liver damage by normalizing cholesterol metabolism in Pemt/Ldlr knockout mice fed a high-fat diet. The Journal of nutrition. 2014;144(3):252-7.

Zhao J, Zhu H, Wang S, Ma X, Liu X, Wang C, et al. Naoxintong protects against atherosclerosis through lipid-lowering and inhibiting maturation of dendritic cells in LDL receptor knockout mice fed a high-fat diet. Current pharmaceutical design. 2013;19(33):5891-6.

Zhang BC, Li XK, Che WL, Li WM, Hou L, Wei YD, et al. [Peroxisome proliferator-activated receptor alpha/gamma agonist tesaglitazar stabilizes atherosclerotic plaque in diabetic low density lipoprotein receptor knockout mice]. Zhonghua xin xue guan bing za zhi. 2013;41(2):143-9.

Yoshimura Y, Nishii S, Zaima N, Moriyama T, Kawamura Y. Ellagic acid improves hepatic steatosis and serum lipid composition through reduction of serum resistin levels and transcriptional activation of hepatic ppara in obese, diabetic KK-A(y) mice. Biochemical and biophysical research communications. 2013;434(3):486-91.

Xia M, Chen D, Endresz V, Faludi I, Szabo A, Gonczol E, et al. Immunization of Chlamydia pneumoniae (Cpn)-infected Apob(tm2Sgy)Ldlr(tm1Her)/J mice with a combined peptide of Cpn significantly reduces atherosclerotic Wen S, Jadhav KS, Williamson DL, Rideout TC. Treadmill Exercise Training Modulates Hepatic Cholesterol Metabolism and Circulating PCSK9 Concentration in High-Fat-Fed Mice. Journal of lipids. 2013;2013:908048.

Wang S, Miller B, Matthan NR, Goktas Z, Wu D, Reed DB, et al. Aortic cholesterol accumulation correlates with systemic inflammation but not hepatic and gonadal adipose tissue inflammation in low-density lipoprotein receptor null mice. Nutrition research. 2013;33(12):1072-82.

van Leeuwen M, Kemna MJ, de Winther MP, Boon L, Duijvestijn AM, Henatsch D, et al. Passive immunization with hypochlorite-oxLDL specific antibodies reduces plaque volume in LDL receptor-deficient mice. PloS one. 2013;8(7):e68039.

Subramanian S, Turner MS, Ding Y, Goodspeed L, Wang S, Buckner JH, et al. Increased levels of invariant natural killer T lymphocytes worsen metabolic abnormalities and atherosclerosis in obese mice. Journal of lipid research. 2013;54(10):2831-41.

Strack AM, Carballo-Jane E, Wang SP, Xue J, Ping X, McNamara LA, et al. Nicotinic acid and DP1 blockade: studies in mouse models of atherosclerosis. Journal of lipid research. 2013;54(1):177-88.

Sinningen K, Rauner M, Goettsch C, Al-Fakhri N, Schoppet M, Hofbauer LC. Monocytic expression of osteoclast-associated receptor (OSCAR) is induced in atherosclerotic mice and regulated by oxidized low-density lipoprotein in vitro. Biochemical and biophysical research communications. 2013;437(2):314-8.

Saraswathi V, Ramnanan CJ, Wilks AW, Desouza CV, Eller AA, Murali G, et al. Impact of hematopoietic cyclooxygenase-1 deficiency on obesity-linked adipose tissue inflammation and metabolic disorders in mice. Metabolism: clinical and experimental. 2013;62(11):1673-85.

更多References,點擊:展開↓

 



有困惑?那就商量唄!


C57小鼠其他疾病模型復制與模型飼料


小幫手
關閉
收藏本網站
丝瓜苹果下载ios二维码_丝瓜app官网版ios下载_丝瓜app向日葵app幸福宝